USTC24F Advanced Real Analysis (MATH5001P) 调和分析简介
1.Fourier级数的收敛性(Riemann-Lebesgue Lemma):逐点收敛性(Dini & Jordan criterion)
-
Harmonic Analysis
-
交换代数初步
USTC24F Algebra Course (MATH5002P)
第二章 Noether环和Noether模,Artin环和Artin模,局部化,整性,根式理想与准素理想,仿射代数几何初步,Gröbner基。 -
Radon测度
USTC24F Advanced Real Analysis (MATH5001P)
第七章 Radon测度 紧支撑的连续函数空间上的正线性泛函,正则性与逼近定理,紧支撑连续函数空间的对偶,乘积Radon测度 -
CSIAM2024 会议回顾
中国工业与应用数学学会2024年年会-南京(10/24-10/28) 报告回顾
-
PID上有限生成模的结构定理
USTC24F Algebra Course (MATH5002P)
环论回顾,扭元、扭模,有限生成无扭模,结构定理,线性代数的标准型理论 -
Lp空间
USTC24F Advanced Real Analysis (MATH5001P)
第六章 Lp空间:基本理论,对偶空间与自反性,Lp估计,插值定理 -
Michael Atiyah:二十世纪的数学
This article is based on the transcript of a recording of the Sir Michael Atiyah’s Fields Lecture at the World Mathematical Year 2000 Symposium, Toronto, June 7-9, 2000.
Abstract:A survey is given of several key themes that have characterised mathematics in the 20th century. The impact of physics is also discussed, and some speculations are made about possible developments in the 21st century. -
积分与微分
USTC24F Advanced Real Analysis (MATH5001P)
第二章 积分理论:简单函数-非负函数-实值函数-复值函数的积分,几种不同的收敛类型,单调收敛定理、控制收敛定理、Lusin引理,Lebesgue积分,Fubini-Tonelli定理。
第三章 符号测度:测度的微分,Vitali覆盖,Hardy-Littlwood极大函数以及极大定理,Lebesgue微分定理,正则性,有界变差函数,关于Lebesgue积分的微积分基本定理 -
有限元课程实验
USTC 2024 Fall Finite Element Method(MATH5005P)课程实验:一维问题,线性有限元,局部刚度矩阵与局部负载向量,二次有限元,Neumann边界
-
Basic theory of Chebyshev Polynomials
Definition, Properties, and Basic applications in Approximation Theory